A vision chip with complementary pathways for open-world sensing (2024)

References

  1. Fossum, E. R. CMOS image sensors: Electronic camera-on-a-chip. IEEE Trans. Electron Devices 44, 1689–1698 (1997).

    Article ADS Google Scholar

  2. Gove, R. J. in High Performance Silicon Imaging 2nd edn (ed. Durini, D.) 185–240 (Elsevier, 2019).

  3. Yun, S. H. & Kwok, S. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 0008 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  4. Liu, Z., Ukida, H., Ramuhalli, P. & Niel, K (eds). Integrated Imaging and Vision Techniques for Industrial Inspection (Springer, 2015).

  5. Nakamura, J. Image Sensors and Signal Processing for Digital Still Cameras (CRC Press, 2017).

  6. Bogdoll, D., Nitsche, M. & Zöllner, M. Anomaly detection in autonomous driving: a survey. In Proc. IEEE/CVF International Conference on Computer Vision and Pattern Recognition 4488–4499 (CVF, 2022).

  7. Hanheide, M. et al. Robot task planning and explanation in open and uncertain worlds. Artif. Intell. 247, 119–150 (2017).

    Article MathSciNet Google Scholar

  8. Sarker, I. H. Machine learning: algorithms, real-world applications and research directions. SN Comp. Sci. 2, 160 (2021).

    Article Google Scholar

  9. Joseph, K., Khan, S., Khan, F. S. & Balasubramanian, V. N. Towards open world object detection. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 5830–5840 (CVF, 2021).

  10. Breitenstein, J., Termöhlen, J.-A., Lipinski, D. & Fingscheidt, T. Breitenstein, J., Termöhlen, J.-A., Lipinski, D. & Fingscheidt, T. Systematization of corner cases for visual perception in automated driving. In 2020 IEEE Intelligent Vehicles Symposium (IV) 1257–1264 (IEEE, 2020).

  11. Yan, C., Xu, W. & Liu, J. Can you trust autonomous vehicles: contactless attacks against sensors of self-driving vehicle. In Proc. Def Con 24, 109 (ACM, 2016).

  12. Li, M., Wang, Y.-X. & Ramanan, D. Towards streaming perception. In European Conf. Computer Vision 473–488 (Springer, 2020).

  13. Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. & Lawrence, N. D. Dataset Shift in Machine Learning (Mit Press, 2008).

  14. Khatab, E., Onsy, A., Varley, M. & Abouelfarag, A. Vulnerable objects detection for autonomous driving: a review. Integration 78, 36–48 (2021).

    Article Google Scholar

  15. Shu, X. & Wu, X. Real-time high-fidelity compression for extremely high frame rate video cameras. IEEE Trans. Comput. Imaging 4, 172–180 (2017).

    Article MathSciNet Google Scholar

  16. Feng, S. et al. Dense reinforcement learning for safety validation of autonomous vehicles. Nature 615, 620–627 (2023).

    Article ADS CAS PubMed Google Scholar

  17. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article CAS PubMed Google Scholar

  18. Nassi, J. J. & Callaway, E. M. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 10, 360–372 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  19. Mahowald, M. & Mahowald, M. in An Analog VLSI System for Stereoscopic Vision (ed. Mahowald, M.) 4–65 (Kluwer, 1994).

  20. Zaghloul, K. A. & Boahen, K. Optic nerve signals in a neuromorphic chip I: Outer and inner retina models. IEEE Trans. Biomed. Eng. 51, 657–666 (2004).

    Article PubMed Google Scholar

  21. Son, B. et al. 4.1 A 640 × 480 dynamic vision sensor with a 9 µm pixel and 300 Meps address-event representation. In 2017 IEEE International Solid-State Circuits Conference (ISSCC) 66–67 (IEEE, 2017).

  22. Kubendran, R., Paul, A. & Cauwenberghs, G. A 256 × 256 6.3 pJ/pixel-event query-driven dynamic vision sensor with energy-conserving row-parallel event scanning. In 2021 IEEE Custom Integrated Circuits Conference (CICC) 1–2 (IEEE, 2021).

  23. Posch, C., Matolin, D. & Wohlgenannt, R. A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J. Solid-State Circuits 46, 259–275 (2010).

    Article ADS Google Scholar

  24. Leñero-Bardallo, J. A., Serrano-Gotarredona, T. & Linares-Barranco, B. A 3.6 μs latency asynchronous frame-free event-driven dynamic-vision-sensor. IEEE J Solid-State Circuits 46, 1443–1455 (2011).

    Article ADS Google Scholar

  25. Prophesee. IMX636ES (HD) https://www.prophesee.ai/event-camera-evk4/ (2021).

  26. Brandli, C., Berner, R., Yang, M., Liu, S.-C. & Delbruck, T. A 240 × 180 130 db 3 µs latency global shutter spatiotemporal vision sensor. IEEE J. Solid-State Circuits 49, 2333–2341 (2014).

    Article ADS Google Scholar

  27. Guo, M. et al. A 3-wafer-stacked hybrid 15MPixel CIS + 1 MPixel EVS with 4.6GEvent/s readout, in-pixel TDC and on-chip ISP and ESP function. In 2023 IEEE International Solid-State Circuits Conference (ISSCC) 90–92 (IEEE, 2023).

  28. Kodama, K. et al. 1.22 μm 35.6Mpixel RGB hybrid event-based vision sensor with 4.88 μm-pitch event pixels and up to 10 K event frame rate by adaptive control on event sparsity. In 2023 IEEE International Solid-State Circuits Conference (ISSCC) 92–94 (IEEE, 2023).

  29. Frohmader, K. P. A novel MOS compatible light intensity-to-frequency converter suited for monolithic integration. IEEE J. Solid-State Circuits 17, 588–591 (1982).

    Article ADS Google Scholar

  30. Huang, T. et al. 1000× faster camera and machine vision with ordinary devices. Engineering 25, 110–119 (2023).

    Article Google Scholar

  31. Wang, X., Wong, W. & Hornsey, R. A high dynamic range CMOS image sensor with inpixel light-to-frequency conversion. IEEE Trans. Electron Devices 53, 2988–2992 (2006).

    Article ADS Google Scholar

  32. Ng, D. C. et al. Pulse frequency modulation based CMOS image sensor for subretinal stimulation. IEEE Trans. Circuits Syst. II Express Briefs 53, 487–491 (2006).

    Article Google Scholar

  33. Culurciello, E., Etienne-Cummings, R. & Boahen, K. A. A biomorphic digital image sensor. IEEE J. Solid-State Circuits 38, 281–294 (2003).

    Article ADS Google Scholar

  34. Shoushun, C. & Bermak, A. Arbitrated time-to-first spike CMOS image sensor with on-chip histogram equalization. IEEE Trans. Very Large Scale Integr. VLSI Syst. 15, 346–357 (2007).

    Article Google Scholar

  35. Guo, X., Qi, X. & Harris, J. G. A time-to-first-spike CMOS image sensor. IEEE Sens. J. 7, 1165–1175 (2007).

    Article ADS CAS Google Scholar

  36. Shi, C. et al. A 1000 fps vision chip based on a dynamically reconfigurable hybrid architecture comprising a PE array processor and self-organizing map neural network. IEEE J. Solid-State Circuits 49, 2067–2082 (2014).

    Article ADS Google Scholar

  37. Hsu, T.-H. et al. A 0.8 V intelligent vision sensor with tiny convolutional neural network and programmable weights using mixed-mode processing-in-sensor technique for image classification. In 2022 IEEE International Solid-State Circuits Conference (ISSCC) 1–3 (IEEE, 2022).

  38. Lefebvre, M., Moreau, L., Dekimpe, R. & Bol, D. 7.7 A 0.2-to-3.6TOPS/W programmable convolutional imager SoC with in-sensor current-domain ternary-weighted MAC operations for feature extraction and region-of-interest detection. In 2021 IEEE International Solid-State Circuits Conference (ISSCC) 118–120 (IEEE, 2021).

  39. Ishikawa, M., Ogawa, K., Komuro, T. & Ishii, I. A CMOS vision chip with SIMD processing element array for 1 ms image processing. In 1999 IEEE International Solid-State Circuits Conference 206–207 (IEEE, 1999).

  40. Shi, Y.-Q. & Sun, H. Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms, and Standards 3rd edn (CRC Press, 2019).

  41. Sakakibara, M. et al. A 6.9-μm pixel-pitch back-illuminated global shutter CMOS image sensor with pixel-parallel 14-bit subthreshold ADC. IEEE J. Solid-State Circuits 53, 3017–3025 (2018).

    Article ADS Google Scholar

  42. Seo, M.-W. et al. 2.45 e-rms low-random-noise, 598.5 mW low-power, and 1.2 kfps high-speed 2-Mp global shutter CMOS image sensor with pixel-level ADC and memory. IEEE J. Solid-State Circuits 57, 1125–1137 (2022).

    Article ADS Google Scholar

  43. Bogaerts, J. et al. 6.3 105 × 65 mm2 391Mpixel CMOS image sensor with >78 dB dynamic range for airborne mapping applications. In 2016 IEEE International Solid-State Circuits Conference (ISSCC) 114–115 (IEEE, 2016).

  44. Park, I., Park, C., Cheon, J. & Chae, Y. 5.4 A 76 mW 500 fps VGA CMOS image sensor with time-stretched single-slope ADCs achieving 1.95e random noise. In 2019 IEEE International Solid-State Circuits Conference (ISSCC) 100–102 (IEEE, 2019).

  45. Oike, Y. et al. 8.3 M-pixel 480-fps global-shutter CMOS image sensor with gain-adaptive column ADCs and chip-on-chip stacked integration. IEEE J. Solid-State Circuits 52, 985–993 (2017).

    Article ADS Google Scholar

  46. Okada, C. et al. A 50.1-Mpixel 14-bit 250-frames/s back-illuminated stacked CMOS image sensor with column-parallel kT/C-canceling S&H and ΔΣADC. IEEE J. Solid-State Circuits 56, 3228–3235 (2021).

    Article ADS Google Scholar

  47. Solhusvik, J. et al. 1280 × 960 2.8 μm HDR CIS with DCG and split-pixel combined. In Proc. International Image Sensor Workshop 254–257 (2019).

  48. Murakami, H. et al. A 4.9 Mpixel programmable-resolution multi-purpose CMOS image sensor for computer vision. In 2022 IEEE International Solid-State Circuits Conference (ISSCC) 104–106 (IEEE, 2022).

  49. iniVation. DAVIS 346, https://inivation.com/wp-content/uploads/2019/08/DAVIS346.pdf (iniVation, 2019).

  50. Kandel, E. R., Koester, J. D., Mack, S. H. & Siegelbaum, S. A. Principles of Neural Science 4th edn (McGraw-Hill, 2000).

  51. Mishkin, M., Ungerleider, L. G. & Macko, K. A. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414–417 (1983).

    Article Google Scholar

  52. Jähne, B. EMVA 1288 Standard for machine vision: Objective specification of vital camera data. Optik Photonik 5, 53–54 (2010).

    Article Google Scholar

  53. Reda, F. A. et al. FILM: Frame Interpolation for Large Motion. In Proc. IEEE/CVF International Conference on Computer Vision 250–266 (ACM, 2022).

  54. Woo, S., Park, J., Lee, J.-Y. & Kweon, I. S. CBAM: Convolutional Block Attention Module. In Proc. European Conference on Computer Vision (ECCV) 3–19 (2018).

  55. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference Proc. Part III Vol. 18 (eds Navab, N. et al.) 234–241 (Springer, 2015).

  56. Ranjan, A. & Black, M. J. CBAM: Convolutional Block Attention Module. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 4161–4170 (CVF, 2018).

  57. Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You Only Look Once: unified, real-time object detection. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 779–788 (IEEE, 2016).

  58. Wu, D. et al. YOLOP: You Only Look Once for Panoptic Driving Perception. Mach. Intell. Res. 19, 550–562 (2022).

    Article Google Scholar

  59. Bochkovskiy, A., Wang, C.-Y. & Liao, H.-Y. M. YOLOv4: optimal speed and accuracy of object detection. Preprint at https://arxiv.org/abs/2004.10934 (2020).

  60. Horn, B. K. & Schunck, B. G. Determining optical flow. Artif. Intell. 17, 185–203 (1981).

    Article Google Scholar

  61. Wang, T. Tianmouc dataset. Zenodo https://doi.org/10.5281/zenodo.10602822 (2024).

  62. Wang, T. Code of “A vision chip with complementary pathways for open-world sensing”. Zenodo https://doi.org/10.5281/zenodo.10775253 (2024).

  63. iniVation. Understanding the Performance of Neuromorphic Event-based Vision Sensors White Paper (iniVation, 2020).

  64. iniVation. DAVIS 346 AER https://inivation.com/wp-content/uploads/2023/07/DAVIS346-AER.pdf (iniVation, 2023).

Download references

A vision chip with complementary pathways for open-world sensing (2024)
Top Articles
Latest Posts
Article information

Author: Jamar Nader

Last Updated:

Views: 5789

Rating: 4.4 / 5 (75 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Jamar Nader

Birthday: 1995-02-28

Address: Apt. 536 6162 Reichel Greens, Port Zackaryside, CT 22682-9804

Phone: +9958384818317

Job: IT Representative

Hobby: Scrapbooking, Hiking, Hunting, Kite flying, Blacksmithing, Video gaming, Foraging

Introduction: My name is Jamar Nader, I am a fine, shiny, colorful, bright, nice, perfect, curious person who loves writing and wants to share my knowledge and understanding with you.